3.241 \(\int \frac{\sec ^2(e+f x)}{\sqrt{a+a \sec (e+f x)} (c+d \sec (e+f x))} \, dx\)

Optimal. Leaf size=124 \[ \frac{2 c \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \tan (e+f x)}{\sqrt{c+d} \sqrt{a \sec (e+f x)+a}}\right )}{\sqrt{a} \sqrt{d} f (c-d) \sqrt{c+d}}-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{2} \sqrt{a \sec (e+f x)+a}}\right )}{\sqrt{a} f (c-d)} \]

[Out]

-((Sqrt[2]*ArcTan[(Sqrt[a]*Tan[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sec[e + f*x]])])/(Sqrt[a]*(c - d)*f)) + (2*c*ArcT
an[(Sqrt[a]*Sqrt[d]*Tan[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sec[e + f*x]])])/(Sqrt[a]*(c - d)*Sqrt[d]*Sqrt[c + d
]*f)

________________________________________________________________________________________

Rubi [A]  time = 0.367964, antiderivative size = 124, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3976, 3795, 203, 3967, 205} \[ \frac{2 c \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \tan (e+f x)}{\sqrt{c+d} \sqrt{a \sec (e+f x)+a}}\right )}{\sqrt{a} \sqrt{d} f (c-d) \sqrt{c+d}}-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{2} \sqrt{a \sec (e+f x)+a}}\right )}{\sqrt{a} f (c-d)} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^2/(Sqrt[a + a*Sec[e + f*x]]*(c + d*Sec[e + f*x])),x]

[Out]

-((Sqrt[2]*ArcTan[(Sqrt[a]*Tan[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sec[e + f*x]])])/(Sqrt[a]*(c - d)*f)) + (2*c*ArcT
an[(Sqrt[a]*Sqrt[d]*Tan[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sec[e + f*x]])])/(Sqrt[a]*(c - d)*Sqrt[d]*Sqrt[c + d
]*f)

Rule 3976

Int[csc[(e_.) + (f_.)*(x_)]^2/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_
))), x_Symbol] :> -Dist[a/(b*c - a*d), Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[c/(b*c - a*d),
 Int[(Csc[e + f*x]*Sqrt[a + b*Csc[e + f*x]])/(c + d*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && N
eQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3967

Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
), x_Symbol] :> Dist[(-2*b)/f, Subst[Int[1/(b*c + a*d + d*x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x
]]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec ^2(e+f x)}{\sqrt{a+a \sec (e+f x)} (c+d \sec (e+f x))} \, dx &=-\frac{\int \frac{\sec (e+f x)}{\sqrt{a+a \sec (e+f x)}} \, dx}{c-d}+\frac{c \int \frac{\sec (e+f x) \sqrt{a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx}{a (c-d)}\\ &=\frac{2 \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{(c-d) f}-\frac{(2 c) \operatorname{Subst}\left (\int \frac{1}{a c+a d+d x^2} \, dx,x,-\frac{a \tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{(c-d) f}\\ &=-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{2} \sqrt{a+a \sec (e+f x)}}\right )}{\sqrt{a} (c-d) f}+\frac{2 c \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \tan (e+f x)}{\sqrt{c+d} \sqrt{a+a \sec (e+f x)}}\right )}{\sqrt{a} (c-d) \sqrt{d} \sqrt{c+d} f}\\ \end{align*}

Mathematica [A]  time = 0.41069, size = 141, normalized size = 1.14 \[ -\frac{2 \cos \left (\frac{1}{2} (e+f x)\right ) \left (\sqrt{d} \sqrt{c+d} \tan ^{-1}\left (\frac{\sin \left (\frac{1}{2} (e+f x)\right )}{\sqrt{\cos (e+f x)}}\right )-\sqrt{2} c \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{d} \sin \left (\frac{1}{2} (e+f x)\right )}{\sqrt{c+d} \sqrt{\cos (e+f x)}}\right )\right )}{\sqrt{d} f (c-d) \sqrt{c+d} \sqrt{\cos (e+f x)} \sqrt{a (\sec (e+f x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^2/(Sqrt[a + a*Sec[e + f*x]]*(c + d*Sec[e + f*x])),x]

[Out]

(-2*(Sqrt[d]*Sqrt[c + d]*ArcTan[Sin[(e + f*x)/2]/Sqrt[Cos[e + f*x]]] - Sqrt[2]*c*ArcTan[(Sqrt[2]*Sqrt[d]*Sin[(
e + f*x)/2])/(Sqrt[c + d]*Sqrt[Cos[e + f*x]])])*Cos[(e + f*x)/2])/((c - d)*Sqrt[d]*Sqrt[c + d]*f*Sqrt[Cos[e +
f*x]]*Sqrt[a*(1 + Sec[e + f*x])])

________________________________________________________________________________________

Maple [B]  time = 0.249, size = 518, normalized size = 4.2 \begin{align*}{\frac{1}{2\,af \left ( c-d \right ) }\sqrt{{\frac{a \left ( 1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}}\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}} \left ( c\sqrt{2}\ln \left ( -2\,{\frac{1}{\sqrt{ \left ( c+d \right ) \left ( c-d \right ) }\sin \left ( fx+e \right ) +c\cos \left ( fx+e \right ) -d\cos \left ( fx+e \right ) -c+d} \left ( \sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\sqrt{{\frac{d}{c-d}}}\sqrt{2}c\sin \left ( fx+e \right ) -\sqrt{2}\sqrt{{\frac{d}{c-d}}}\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}d\sin \left ( fx+e \right ) -\sqrt{ \left ( c+d \right ) \left ( c-d \right ) }\cos \left ( fx+e \right ) -c\sin \left ( fx+e \right ) +d\sin \left ( fx+e \right ) +\sqrt{ \left ( c+d \right ) \left ( c-d \right ) } \right ) } \right ) -c\sqrt{2}\ln \left ( 2\,{\frac{1}{\sqrt{ \left ( c+d \right ) \left ( c-d \right ) }\sin \left ( fx+e \right ) -c\cos \left ( fx+e \right ) +d\cos \left ( fx+e \right ) +c-d} \left ( \sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\sqrt{{\frac{d}{c-d}}}\sqrt{2}c\sin \left ( fx+e \right ) -\sqrt{2}\sqrt{{\frac{d}{c-d}}}\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}d\sin \left ( fx+e \right ) +\sqrt{ \left ( c+d \right ) \left ( c-d \right ) }\cos \left ( fx+e \right ) -c\sin \left ( fx+e \right ) +d\sin \left ( fx+e \right ) -\sqrt{ \left ( c+d \right ) \left ( c-d \right ) } \right ) } \right ) -2\,\sqrt{ \left ( c+d \right ) \left ( c-d \right ) }\ln \left ( -{\frac{1}{\sin \left ( fx+e \right ) } \left ( -\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\sin \left ( fx+e \right ) +\cos \left ( fx+e \right ) -1 \right ) } \right ) \sqrt{{\frac{d}{c-d}}} \right ){\frac{1}{\sqrt{ \left ( c+d \right ) \left ( c-d \right ) }}}{\frac{1}{\sqrt{{\frac{d}{c-d}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^2/(c+d*sec(f*x+e))/(a+a*sec(f*x+e))^(1/2),x)

[Out]

1/2/f/a/((c+d)*(c-d))^(1/2)/(c-d)/(d/(c-d))^(1/2)*(1/cos(f*x+e)*a*(1+cos(f*x+e)))^(1/2)*(-2*cos(f*x+e)/(1+cos(
f*x+e)))^(1/2)*(c*2^(1/2)*ln(-2*((-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*(d/(c-d))^(1/2)*2^(1/2)*c*sin(f*x+e)-2^(
1/2)*(d/(c-d))^(1/2)*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*d*sin(f*x+e)-((c+d)*(c-d))^(1/2)*cos(f*x+e)-c*sin(f*
x+e)+d*sin(f*x+e)+((c+d)*(c-d))^(1/2))/(((c+d)*(c-d))^(1/2)*sin(f*x+e)+c*cos(f*x+e)-d*cos(f*x+e)-c+d))-c*2^(1/
2)*ln(2*((-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*(d/(c-d))^(1/2)*2^(1/2)*c*sin(f*x+e)-2^(1/2)*(d/(c-d))^(1/2)*(-2
*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*d*sin(f*x+e)+((c+d)*(c-d))^(1/2)*cos(f*x+e)-c*sin(f*x+e)+d*sin(f*x+e)-((c+d)
*(c-d))^(1/2))/(((c+d)*(c-d))^(1/2)*sin(f*x+e)-c*cos(f*x+e)+d*cos(f*x+e)+c-d))-2*((c+d)*(c-d))^(1/2)*ln(-(-(-2
*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)+cos(f*x+e)-1)/sin(f*x+e))*(d/(c-d))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (f x + e\right )^{2}}{\sqrt{a \sec \left (f x + e\right ) + a}{\left (d \sec \left (f x + e\right ) + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2/(c+d*sec(f*x+e))/(a+a*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(f*x + e)^2/(sqrt(a*sec(f*x + e) + a)*(d*sec(f*x + e) + c)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.50967, size = 2543, normalized size = 20.51 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2/(c+d*sec(f*x+e))/(a+a*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[-1/2*(sqrt(2)*(a*c*d + a*d^2)*sqrt(-1/a)*log(-(2*sqrt(2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt(-1/a)*c
os(f*x + e)*sin(f*x + e) - 3*cos(f*x + e)^2 - 2*cos(f*x + e) + 1)/(cos(f*x + e)^2 + 2*cos(f*x + e) + 1)) - sqr
t(-a*c*d - a*d^2)*c*log(-((a*c^2 + 8*a*c*d + 8*a*d^2)*cos(f*x + e)^3 + a*d^2 + (a*c^2 + 2*a*c*d)*cos(f*x + e)^
2 - 4*sqrt(-a*c*d - a*d^2)*((c + 2*d)*cos(f*x + e)^2 - d*cos(f*x + e))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))
*sin(f*x + e) - (6*a*c*d + 7*a*d^2)*cos(f*x + e))/(c^2*cos(f*x + e)^3 + (c^2 + 2*c*d)*cos(f*x + e)^2 + d^2 + (
2*c*d + d^2)*cos(f*x + e))))/((a*c^2*d - a*d^3)*f), -1/2*(sqrt(2)*(a*c*d + a*d^2)*sqrt(-1/a)*log(-(2*sqrt(2)*s
qrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt(-1/a)*cos(f*x + e)*sin(f*x + e) - 3*cos(f*x + e)^2 - 2*cos(f*x + e
) + 1)/(cos(f*x + e)^2 + 2*cos(f*x + e) + 1)) - 2*sqrt(a*c*d + a*d^2)*c*arctan(2*sqrt(a*c*d + a*d^2)*sqrt((a*c
os(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e)/((a*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos
(f*x + e))))/((a*c^2*d - a*d^3)*f), 1/2*(sqrt(-a*c*d - a*d^2)*c*log(-((a*c^2 + 8*a*c*d + 8*a*d^2)*cos(f*x + e)
^3 + a*d^2 + (a*c^2 + 2*a*c*d)*cos(f*x + e)^2 - 4*sqrt(-a*c*d - a*d^2)*((c + 2*d)*cos(f*x + e)^2 - d*cos(f*x +
 e))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + e) - (6*a*c*d + 7*a*d^2)*cos(f*x + e))/(c^2*cos(f*x + e
)^3 + (c^2 + 2*c*d)*cos(f*x + e)^2 + d^2 + (2*c*d + d^2)*cos(f*x + e))) + 2*sqrt(2)*(a*c*d + a*d^2)*arctan(sqr
t(2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e)))/sqrt(a))/((a*c^2*d - a*d^3)*
f), (sqrt(a*c*d + a*d^2)*c*arctan(2*sqrt(a*c*d + a*d^2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*s
in(f*x + e)/((a*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x + e))) + sqrt(2)*(a*c*d + a*d^2)*arctan(
sqrt(2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e)))/sqrt(a))/((a*c^2*d - a*d^
3)*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{2}{\left (e + f x \right )}}{\sqrt{a \left (\sec{\left (e + f x \right )} + 1\right )} \left (c + d \sec{\left (e + f x \right )}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**2/(c+d*sec(f*x+e))/(a+a*sec(f*x+e))**(1/2),x)

[Out]

Integral(sec(e + f*x)**2/(sqrt(a*(sec(e + f*x) + 1))*(c + d*sec(e + f*x))), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2/(c+d*sec(f*x+e))/(a+a*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Timed out